organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Monika Haberecht,^a Hans-Wolfram Lerner^a and Michael Bolte^b*

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.038 wR factor = 0.092 Data-to-parameter ratio = 30.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

p-Bis(trimethylsilyl)benzene: rerefinement against new intensity data

The redetermination of the structure of the title compound, $C_{12}H_{22}Si_2$, agrees with the results previously reported by Menczel & Kiss [*Acta Cryst.* (1975). B**31**, 1787–1789], but with improved precision. The molecules are located on centres of inversion. As a result, there is just a half molecule in the asymmetric unit.

Received 11 March 2002 Accepted 12 March 2002 Online 22 March 2002

Comment

Dibromoboryl compounds with an aromatic ring system are conveniently accessible from trimethylsilylarenes and BBr₃ (see Scheme below) (Haberecht, 2002). π -Systems containing B atoms have attracted recent attention as a result of their potential applications. Therefore, we became interested in the reaction of bis(trimethylsilyl)benzene with BBr₃. In this context, we recrystallized the title compound, (I), from hot toluene. The original synthesis and structure of (I) was reported by Menczel & Kiss (1975). The structure was determined using Weissenberg photographs and visual estimation of the intensities. In the present work, the structure was determined from data collected on a two-circle diffractometer equipped with an image-plate detector. Our results agree quite well with those of Menczel & Kiss; however, they are far more precise. The Si-CH₃ bonds are equal in length, applying the 3σ criterion, and the Si-C_{ar} bond is definitely longer. Furthermore, the aromatic C-C bonds are of the same length. These two results could not be deduced by Menczel & Kiss (1975).

Experimental

Colourless crystals of the title compound were obtained from a boiling solution of bis(trimethylsilyl)benzene in 10 ml toluene.

Crystal data

$C_{12}H_{22}Si_2$	$D_x = 1.036 \text{ Mg m}^{-3}$
$M_r = 222.48$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 11837
u = 6.5410 (7) Å	reflections
p = 10.5452 (10) Å	$\theta = 3.6-29.6^{\circ}$
= 10.3952 (12) Å	$\mu = 0.22 \text{ mm}^{-1}$
$B = 96.029 \ (9)^{\circ}$	T = 173 (2) K
$V = 713.05 (13) \text{ Å}^3$	Block, colourless
Z = 2	$0.39 \times 0.19 \times 0.17 \text{ mm}$

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Stoe IPDS II two-circle	1955 independent reflections 1739 reflections with $I > 2\sigma(I)$
w scans	$R_{\rm c} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 29.4^{\circ}$
(MULABS; Spek, 1990; Blessing,	$h = -9 \rightarrow 8$
1995)	$k = -14 \rightarrow 14$
$T_{\min} = 0.920, T_{\max} = 0.964$	$l = -14 \rightarrow 14$
9295 measured reflections	
D.C.	
Kefinement	

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0421P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.038 & w + 0.2264P] \\ wR(F^2) = 0.092 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.08 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 1955 \ reflections & \Delta\rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3} \\ 64 \ {\rm parameters} & \Delta\rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å).

Si1-C6	1.8622 (17)	C1-C2	1.3994 (17)
Si1-C5	1.8633 (15)	$C1-C3^{i}$	1.4007 (17)
Si1-C4	1.8683 (17)	C2-C3	1.3946 (17)
Si1-C1	1.8817 (12)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

All H atoms could be located in a difference Fourier synthesis. They were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$, using a riding model with C-H(aromatic) = 0.95 Å or C-H(methyl) = 0.98 Å.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Figure 1

Perspective view of (I) with the atom numbering; displacement ellipsoids are drawn at the 50% probability level.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.
Haberecht, M. (2002). Diploma thesis, University of Frankfurt, Germany.
Menczel, G. & Kiss, J. (1975). Acta Cryst. B31, 1787–1789.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.